|
|
|
ÄÁÅÙÃ÷ | contents |
|
|
½ºÅ͵ð | study |
|
|
|
|
|
|
|
|
Centrifugal Compressor °ü·Ã¼ö½Ä Á¤¸® |
|
|
±Û¾´ÀÌ : ¿î¿µÀÚ °íÀ¯ID : ¿î¿µÀÚ
³¯Â¥ : 00-00-00 00:00
Á¶È¸ : 17202
|
|
|
Centrifugal Compressor °ü·Ã¼ö½Ä Á¤¸®
¡Ý Compression Process
1. Adiabatic
(P V)^k = C, k = Cp/Cv
¾î¶°ÇÑ ¿µµ °¡½º¸¦ ¾ÐÃà¿îÀüÀ» ÇÏ´Â µ¿¾È¿¡ ´õÇØÁö°Å³ª »©ÁöÁö ¾Ê´Â »óÅÂ
¾ÐÃൿ¾È¿¡ °¡½ºÀÇ ¿Âµµ»ó½ÂÀÌ ÀÌ·ç¾î Áø´Ù.
2. Isothermal
(P V) = C
¾ÐÃà¿îÀü µ¿¾È¿¡ »ó½ÂµÈ ¿ÀÌ Á¦°ÅµÇ¾îÁ® °¡½ºÀÇ ¿Âµµ´Â ÀÏÁ¤ÇÏ´Ù.
ÀϹÝÀûÀÎ ¼³ºñ¿¡¼´Â ÀÌ·¯ÇÑ ¾ÐÃàÀº ÀÌ·ç¾î ÁöÁö ¾Ê´Â´Ù.
3. Polytropic
(P V)^n = C, k = Cp/Cv
Polytropic ¾ÐÃàÀº Adiabatic ¶Ç´Â Isothermal µµ ¾Æ´Ñ ¾ÐÃàÀÌ´Ù.
nÀº ¾ÐÃà½Ã Compression Performance¿¡ ÀÇÇØ °áÁ¤µÇ¾îÁö´Â Ư¼ºÄ¡ÀÌ´Ù.
¸¸ÀÏ n = 1 Àΰæ¿ì ¾ÐÃàÀº Isothermal À̸ç n = k Àΰæ¿ì´Â Adiabatic
º¸Åë Centrifual Compressor¿¡¼´Â ³»ºÎÀûÀ¸·Î ³Ã°¢ÀÌ ÀÌ·ç¾î ÁöÁö ¾ÊÀ¸¸é,
n > k °¡ µÇ¸ç polytropic Ư¼ºÀ» °®´Â´Ù.
¸¸ÀÏ ³»ºÎÀûÀ¸·Î ³Ã°¢ÀÌ µÇ¸é, n > 1.0 ¸é¼ n < k °¡ µÈ´Ù.
polytropic exponent n ´Â ¾ÐÃà°úÁ¤¿¡¼ ´ÙÀ½°ú °°Àº °ü°è¸¦ °®´Â´Ù.
n = log10 (P2/P1) / log10 (v1/v2)
P : Absolute Pressure
v : Specific Volume
º»½ÄÀº Multi Stage CompressorÀÇ °¢ Single Wheels¿¡ ¸ðµÎ Àû¿ëµÈ´Ù.
¡Ý Efficiency
1. Adiabatic Efficiency
Adiabatic Efficiency
= ÀÌ·Ð adaibatic horsepower / ½ÇÁ¦ brake horsepower @ Compressor Shaft
= Compression Efficiency * Mechanical Efficiency
ea = adiabatic work / polytropic work
= [(P2/P1)^((k-1)/k) -1] / [(P2/P1)^((n-1)/n) -1]
ea = ÀÌ·Ð adaibatic temperature rise / actual temperature rise
= T1 [(P2/P1)^((k-1)/k) -1] / (T2 - T1)
2. Adiabatic Shaft Efficiency
Adiabatic & polytropic Efficiency¿¡´Â packing gland, oil pump, jounal
bearing, thrust beraings µî¿¡¼ÀÇ loss´Â Æ÷ÇÔµÇÁö ¾Ê´Â´Ù.
- 500 HP ÀÌÇÏ : 3% ÀÌ»ó loss
- 500~1500 HP : 1~3% loss
- 1500 HP ÀÌ»ó : 1~1.5% loss
3. Polytropic Efficiency
Polytropic Efficiency
= ÀÌ·Ð polytropic horsepower / ½ÇÁ¦ brake horsepower (@ Compressor Shaft)
= Compression Efficiency * Mechanical Efficiency
ep = [(k-1)/k) -1] / [(n-1)/n) -1]
ÀϹÝÀûÀ¸·Î 0.70 < ep < 0.80 À̸ç 0.72°¡ ÀÌ»óÀûÀÌ´Ù.
ep = loge [(P2/P1)^((k-1)/k) -1] / loge [T2 / T1]
¡Ý Head
1. Adiabatic Head
Ha = 144 P1V1 k/(k-1) [(P2/P1)^((k-1)/k) -1] Z1 [feet]
Ha = R T1 k/(k-1) [(P2/P1)^((k-1)/k) -1] Z1 [feet]
Ha = 1545 (T1 / M.W) k/(k-1) [(P2/P1)^((k-1)/k) -1] Z1 [feet]
Ha = 53.3/Sp.Gr T1 k/(k-1) [(P2/P1)^((k-1)/k) -1] Z1 [feet]
Ha : Total hea [feet]
V1 : Suction Vulume [cu.ft/min]
R : Gas constant = 1545 / MW
T : Temperature [R]
k : Cp/Cv
Z1 : Compressibility factor
P1 : Inlet Pressure [psia]
P2 : Discharge Pressure [psia]
Sp.Gr : Specific Gravity
2. Polytropic Head
Hp = 144 P1 V1 (n/(n-1)) [(P2/P1)^(n-1)/n - 1] Z1 [feet]
Hp = Z1 R T1 (n/(n-1)) [(P2/P1)^(n-1)/n - 1] Z1 [feet]
Hp = 1545 (Z1 T1 / M.W) (n/(n-1)) [(P2/P1)^(n-1)/n - 1] Z1 [feet]
Hp : Polytropic Head, = adiabatic head/ ea
V1 : Suction Vulume [cu.ft/min]
R : Gas constant = 1545 / MW
T : Temperature [R]
k : Cp/Cv
Z1 : Compressibility factor
P1 : Inlet Pressure [psia]
P2 : Discharge Pressure [psia]
¡Ý Brake horsepower
HPg = 778 W (h2-h1) / 33000 = W Hp / 33000 ep
shaft HPg = HPg / (0.99 ~ 0.97)
BHP = P1 V1 [(k/(k-1)] [(P2/P1)^(k-1)/k - 1] [(Z1+Z2)/2 / Z1] / (229 ea)
W : Gas flow [lbs/min]
h2, h1 : Discharge, inlet Enthalpy [Btu/Lb]
HPg : Gas Horsepower
Hp : Polytropic head [feet]
ep : Hydraulic or polytropic efficiency (0.70~0.80)
BHP : Brake horsepower @ Compressor shaft
Z1 : Compressibility factor
¡Ý Peripheral Velocity (= Tip Speed)
u = ¥ðD (RPM) / 720 [ft/sec]
u : Peripheral Velocity [ft/sec]
D : Impeller Diameter [in]
¡Ý Temperature Rise
1. Adiabatic
T2 = T1 (P2/P1)^(k-1)/k
2. Polytropic
T2 = T1 (P2/P1)^(n-1)/n
T : Temperature Inlet, Discharge [R]
P : Pressure Inlet, Discharge [psia]
¡Ý Sonic or Acoustic Velocity
Vs = [k 32.2 R T Z]^1/2 [feet/sec]
k : Cp/Cv
R : Gas Constant = 1545 / Mw
T : average absolute temperature [R]
Z : Compressibility factor for gas at T
Åë»ó gas velocity´Â sonic velocity ÁÖº¯ ¶Ç´Â ±× ÀÌ»óÀÌ µÇÁö ¾Êµµ·Ï ÇÑ´Ù.
¡Ý Specific Speed
Ns = RPM * SQRT(V1) / Ha^0.75
V1 : Flow rate @ Suction condition [cu.ft/min]
Ns : Totqal head of wheel [feet]
RPM : actual speed of wheel [rpm]
Centrifugal Compressor´Â º¸ÆíÀûÀ¸·Î ³ôÀº È¿À²»óÅ¿¡¼ 1500~3000 rpmÀÇ
Specific Speed °ªÀ» °®´Â´Ù.
¡Ý Affinity Laws
1. Speed
V2 = V1 (RPM2 / RPM1)
H2 = H1 (RPM2 / RPM1)^2
BHP2 = BHP1 (RPM2 / RPM1)^3
2. Impellar Diameter (Similar)
H2 = H1 (D2 / D1)^2
V2 = V1 (D2 / D1)^3
BHP2 = BHP1 (D2/D1)^5
3. Impellar Diameter (Changed)
H2 = H1 (D2 / D1)^2
CFM2 = CFM1 (D2 / D1)
BHP2 = BHP1 (D2/D1)^3
4. Effect of temperature
BHP2 = BHP1 (T1/T2)
|
|
|
|